A Wave Propagation Algorithm for Hyperbolic Systems on Curved Manifolds
نویسندگان
چکیده
An extension of the wave propagation algorithm first introduced by LeVeque [J. Comp. Phys. 131, 327–353 (1997)] is developed for hyperbolic systems on a general curved manifold. This extension is important in a variety of applications, including the propagation of sound waves on a curved surface, shallow water flow on the surface of the Earth, shallow water magnetohydrodynamics in the solar tachocline, and relativistic hydrodynamics in the presence of compact objects such as neutron stars and black holes. As is the case for the Cartesian wave propagation algorithm, this new approach is second order accurate for smooth flows and high-resolution shockcapturing. The algorithm is formulated such that scalar variables are numerically conserved and vector variables have a geometric source term that is naturally incorporated into a modified Riemann solver. Furthermore, all necessary one-dimensional Riemann problems are solved in a locally valid orthonormal basis. This orthonormalization allows one to solve Cartesian Riemann problems that are devoid of geometric terms. The new method is tested via application to the linear wave equation on a curved manifold as well as the shallow water equations on part of a sphere. The proposed algorithm has been implemented in the software package clawpack and is freely available on the web.
منابع مشابه
Dynamics of Asymptotically Hyperbolic Manifolds
We prove a dynamical wave trace formula for asymptotically hyperbolic (n+1) dimensional manifolds with negative (but not necessarily constant) sectional curvatures which equates the renormalized wave trace to the lengths of closed geodesics. This result generalizes the classical theorem of Duistermaat-Guillemin for compact manifolds and the results of GuillopéZworski, Perry, and Guillarmou-Naud...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملLearning Curved Manifolds The World is not always Flat or Learning Curved Manifolds
Manifold learning and finding low-dimensional structure in data is an important task. Many algorithms for this purpose embed data in Euclidean space, an approach which is destined to fail on non-flat data. This paper presents a non-iterative algebraic method for embedding the data into hyperbolic and spherical spaces. We argue that these spaces are often better than Euclidean space in capturing...
متن کاملParallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit
The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...
متن کاملPropagation of singularities for the wave equation on manifolds with corners
In this paper we describe the propagation of C∞ and Sobolev singularities for the wave equation on C∞ manifolds with corners M equipped with a Riemannian metric g. That is, for X = M × Rt, P = D t − ∆M , and u ∈ H loc (X) solving Pu = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WFb(u) is a union of maximally extended generalized broken bicharacteristics. This resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004